AIR QUALITY AND CLIMATE

CHAPTER 9

9.0 AIR QUALITY AND CLIMATE

9.1 INTRODUCTION

This chapter assesses the likely air quality and climate impacts associated with the proposed development at Ballyoulster and Donaghcumper, Celbridge, Co. Kildare. The proposed development will consist of the construction of 344 no. residential units, a childcare facility, communal and public open space, landscaping, car and cycle parking spaces, a secondary link street from Dublin Road and Shinkeen Road, including provision of vehicular accesses, associated internal roads, pedestrian and cycle paths, bin storage, public lighting, ESB substations, pumping station and all associated site and infrastructural works. A full description of the development can be found in Chapter 2.

This chapter was completed by Ciara Nolan, a Senior Environmental Consultant in the air quality section of AWN Consulting Ltd. She holds an MSc. (First Class) in Environmental Science from University College Dublin and has also completed a BSc. in Energy Systems Engineering. She is an Associate Member of both the Institute of Air Quality Management (AMIAQM) and the Institution of Environmental Science (AMIEnvSc). She has been active in the field of air quality for 5 years, with a primary focus on consultancy. She has prepared air quality and climate impact assessments for numerous EIARs for a range of projects including commercial, residential, industrial, pharmaceutical and data centre developments.

9.2 STUDY METHODOLOGY

This chapter has been prepared having regard to the following guidelines:

- Environmental Impact Assessment of Projects: Guidance on the preparation of the Environmental Impact Assessment Report (European Commission, 2017)
- Guidelines on the Information to be Contained in Environmental Impact Assessment Reports (EPA, 2022)
- Advice Note on Preparing Environmental Impact Statements Draft (EPA, 2015)
- Advice Notes on Current Practice (In the Preparation of Environmental Impact Statements) (EPA, 2003)
- Guidelines On Information to Be Contained in Environmental Impact Statements (EPA, 2002)
- Guidance on Integrating Climate Change and Biodiversity into Environmental Impact Assessment (European Commission, 2013)
- Guidance on the Assessment of Dust from Demolition and Construction Version 1.1 (Institute of Air Quality Management (IAQM), 2014)
- UK Design Manual for Roads and Bridges (DMRB), Volume 11, Environmental Assessment, Section 3 Environmental Assessment Techniques, Part 1 LA 105 Air quality (UK Highways Agency, 2019a)
- UK Design Manual for Roads and Bridges (DMRB) Volume 11 Environmental Assessment, Section 3 Environmental Assessment Techniques, Part 14 LA 114 Climate (UK Highways Agency, 2019b)

9.2.1 Criteria for Rating of Impacts

Ambient Air Quality Standards

In order to reduce the risk to health from poor air quality, national and European statutory bodies have set limit values in ambient air for a range of air pollutants. These limit values or "Air Quality Standards" are health or environmental-based levels for which additional factors may be considered. For example, natural background levels, environmental conditions and socio-economic factors may all play a part in the limit value which is set (see Table 9.1 and Appendix 9.1).

Air quality significance criteria are assessed on the basis of compliance with the appropriate standards or limit values. The applicable standards in Ireland include the Air Quality Standards Regulations 2011, which

incorporate EU Directive 2008/50/EC, which has set limit values for a number of pollutants. The limit values for NO₂, PM_{10} and $PM_{2.5}$, are relevant to this assessment (see Table 9.1). Although the EU Air Quality Limit Values are the basis of legislation, other thresholds outlined by the EU Directives are used which are triggers for particular actions (see Appendix 9.1).

Pollutant	Regulation Note 1	Limit Type	Value
Nitrogen	2008/50/EC	Hourly limit for protection of human health - not to be exceeded more than 18 times/year	200 µg/m ³
Dioxide		Annual limit for protection of human health	40 µg/m³
		Critical level for protection of vegetation	30 µg/m ³ NO + NO ₂
Particulate Matter	2008/50/EC	24-hour limit for protection of human health - not to be exceeded more than 35 times/year	50 µg/m³
(as PM ₁₀)		Annual limit for protection of human health	40 µg/m³
Particulate Matter (as PM _{2.5})	2008/50/EC	Annual limit for protection of human health	25 μg/m³

EU 2008/50/EC – Clean Air For Europe (CAFÉ) Directive replaces the previous Air Framework Directive (1996/30/EC) and daughter directives 1999/30/EC and 2000/69/EC

Table 9.1: Air Quality Standards Regulations

Dust Deposition Guidelines

The concern from a health perspective is focussed on particles of dust which are less than 10 microns (PM_{10}) and less than 2.5 microns ($PM_{2.5}$) and the EU ambient air quality standards outlined in Table 9.1 have set ambient air quality limit values for PM_{10} and $PM_{2.5}$.

With regards to larger dust particles that can give rise to nuisance dust, there are no statutory guidelines regarding the maximum dust deposition levels that may be generated during the construction phase of a development in Ireland. Furthermore, no specific criteria have been stipulated for nuisance dust in respect of this development.

With regard to dust deposition, the German TA-Luft standard for dust deposition (non-hazardous dust) (German VDI, 2002) sets a maximum permissible emission level for dust deposition of 350 mg/(m^{2*}day) averaged over a one year period at any receptors outside the site boundary. Recommendations from the Department of the Environment, Heritage & Local Government (DEHLG, 2004) apply the Bergerhoff limit of 350 mg/(m^{2*}day) to the site boundary of quarries. This limit value can also be implemented with regard to dust impacts from construction of the proposed development.

Climate Agreements

Ireland is party to both the United Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol. The Paris Agreement, which entered into force in 2016, is an important milestone in terms of international climate change agreements and includes an aim of limiting global temperature increases to no more than 2°C above pre-industrial levels with efforts to limit this rise to 1.5°C. The aim is to limit global GHG emissions to 40 gigatonnes as soon as possible whilst acknowledging that peaking of GHG emissions will take longer for developing countries. Contributions to GHG emissions will be based on Intended Nationally Determined Contributions (INDCs) which will form the foundation for climate action post 2020. Significant progress was also made in the Paris Agreement on elevating adaption onto the same level as action to cut and curb emissions.

In order to meet the commitments under the Paris Agreement, the EU enacted Regulation (EU) 2018/842 on binding annual greenhouse gas emission reductions by Member States from 2021 to 2030 contributing to climate action to meet commitments under the Paris Agreement and amending Regulation (EU) No. 525/2013

(the Regulation). The Regulation aims to deliver, collectively by the EU in the most cost-effective manner possible, reductions in GHG emissions from the Emission Trading Scheme (ETS) and non-ETS sectors amounting to 43% and 30%, respectively, by 2030 compared to 2005. Ireland's obligation under the Regulation is a 30% reduction in non-ETS greenhouse gas emissions by 2030 relative to its 2005 levels.

In 2015, the Climate Action and Low Carbon Development Act 2015 (No. 46 of 2015) (Government of Ireland, 2015) was enacted (the Act). The purpose of the Act was to enable Ireland '*to pursue, and achieve, the transition to a low carbon, climate resilient and environmentally sustainable economy by the end of the year 2050*' (3.(1) of No. 46 of 2015). This is referred to in the Act as the '*national transition objective*'. The Act made provision for, *inter alia*, a national adaptation framework. In addition, the Act provided for the establishment of the Climate Change Advisory Council with the function to advise and make recommendations on the preparation of the national mitigation and adaptation plans and compliance with existing climate obligations.

The first Climate Action Plan (CAP) was published by the Irish Government in June 2019 (Government of Ireland, 2019a). The Climate Action Plan 2019 outlined the current status across key sectors including Electricity, Transport, Built Environment, Industry and Agriculture and outlined the various broadscale measures required for each sector to achieve ambitious decarbonisation targets. The 2019 CAP also detailed the required governance arrangements for implementation including carbon-proofing of policies, establishment of carbon budgets, a strengthened Climate Change Advisory Council and greater accountability to the Oireachtas. The Government published the second Climate Action Plan in November 2021 (Government of Ireland, 2021a). The plan contains similar elements as the 2019 CAP and aims to set out how Ireland can reduce our greenhouse gas emissions by 51% by 2030 (compared to 2018 levels) which is in line with the EU ambitions, and a longer-term goal of to achieving net-zero emissions no later than 2050. The 2021 CAP outlines that emissions from the Built Environment sector must be reduced to 4 - 5 MtCO₂e by 2030 in order to meet our climate targets. This will require further measures in addition to those committed to in the 2019 CAP. This will include phasing out the use of fossil fuels for the space and water heating of buildings, improving the fabric and energy of our buildings, and promoting the use of lower carbon alternatives in construction.

Following on from Ireland declaring a climate and biodiversity emergency in May 2019 and the European Parliament approving a resolution declaring a climate and environment emergency in Europe in November 2019, the Government approved the publication of the General Scheme for the Climate Action (Amendment) Bill 2019 in December 2019 (Government of Ireland 2019b) followed by the publication of the Climate Action and Low Carbon Development (Amendment) Act 2021 (No. 32 of 2021) (hereafter referred to as the 2021 Climate Act) in July 2021 (Government of Ireland, 2021b). The 2021 Climate Act was prepared for the purposes of giving statutory effect to the core objectives stated within the CAP.

The purpose of the 2021 Climate Act is to provide for the approval of plans 'for the purpose of pursuing the transition to a climate resilient, biodiversity rich and climate neutral economy by no later than the end of the year 2050'. The 2021 Climate Act will also 'provide for carbon budgets and a decarbonisation target range for certain sectors of the economy'. The 2021 Climate Act defines the carbon budget as 'the total amount of greenhouse gas emissions that are permitted during the budget period'. The 2021 Climate Act removes any reference to a national mitigation plan and instead refers to both the Climate Action Plan, as published in 2019, and a series of National Long Term Climate Action Strategies. In addition, the Environment Minister shall request each local authority to make a 'local authority climate action plan' lasting five years and to specify the mitigation measures and the adaptation measures to be adopted by the local authority.

9.2.2 Assessment of Construction Phase

Air Quality

The Institute of Air Quality Management in the UK (IAQM) guidance document '*Guidance on the Assessment of Dust from Demolition and Construction*' (2014) outlines an assessment method for predicting the impact of dust emissions from construction activities based on the scale and nature of the works and the sensitivity of the

area to dust impacts. The IAQM methodology has been applied to the construction phase of this development in order to predict the likely risk of dust impacts in the absence of mitigation measures and to determine the level of site-specific mitigation required. The use of UK guidance is considered best practice in the absence of applicable Irish guidance.

The major dust generating activities are divided into four types within the IAQM guidance (2014) to reflect their different potential impacts. These are: -

- Demolition.
- Earthworks.
- Construction.
- Trackout (movement of heavy vehicles).

The magnitude of each of the four categories is divided into Large, Medium or Small scale depending on the nature of the activities involved. The magnitude of each activity is combined with the overall sensitivity of the area to determine the risk of dust impacts from site activities. This allows the level of site-specific mitigation to be determined.

Construction phase traffic also has the potential to impact air quality and climate. The UK DMRB guidance (UK Highways Agency, 2019), states that road links meeting one or more of the following criteria can be defined as being 'affected' by a proposed development and should be included in the local air quality assessment. The use of the UK guidance is recommended by the TII (2011) in the absence of specific Irish guidance, this approach is considered best practice and can be applied to any development that causes a change in traffic.

- Annual average daily traffic (AADT) changes by 1,000 or more;
- Heavy duty vehicle (HDV) AADT changes by 200 or more;
- A change in speed band;
- A change in carriageway alignment by 5m or greater.

The construction stage traffic will not increase by 1,000 AADT or 200 HDV AADT and therefore does not meet the above scoping criteria. As a result, a detailed air assessment of construction stage traffic emissions has been scoped out from any further assessment as there is no potential for significant impacts to air quality.

Climate

The impact of the construction phase of the development on climate was determined by a qualitative assessment of the nature and scale of greenhouse gas generating construction activities associated with the proposed development.

9.2.3 Assessment of Operational Phase

Air Quality

The air quality assessment has been carried out following procedures described in the publications by the EPA (2015; 2022) and using the methodology outlined in the guidance documents published by the UK Highways Agency (2019a) and UK Department of Environment Food and Rural Affairs (DEFRA) (2016; 2018). Transport Infrastructure Ireland (TII) reference the use of the UK Highways Agency and DEFRA guidance and methodology in their document *Guidelines for the Treatment of Air Quality During the Planning and Construction of National Road Schemes* (2011). This approach is considered best practice in the absence of Irish guidance and can be applied to any development that causes a change in traffic.

Operational phase traffic has the potential to impact local air quality as a result of increased vehicle movements associated with the proposed development. Traffic data for the proposed development was provided by DBFL

Consulting Engineers on 03/05/2022. This included details of the traffic for the proposed development in addition to the cumulative traffic associated with the proposed development and existing developments. The UK Highways Agency DMRB scoping criteria detailed in Section 9.2.2 was used to determine if any road links are affected by the proposed development and require inclusion in a detailed air dispersion modelling assessment. The proposed development will not increase traffic volume (AADT or HGVs), speeds or change the road alignment by an amount greater than the scoping criteria (Section 9.2.2). Therefore, no road links impacted by the proposed development satisfy the criteria and a quantitative assessment of the impact of traffic emissions on ambient air quality is not necessary as there is no potential for significant impacts to local air quality.

Climate

Ireland has annual GHG targets which are set at an EU level and need to be complied with in order to reduce the impact of climate change. Impacts to climate as a result of GHG emissions are assessed against the targets set out by the EU under *Regulation (EU) 2018/842* on binding annual greenhouse gas emission reductions by Member States from 2021 to 2030 contributing to climate action to meet commitments under the Paris Agreement and amending Regulation (EU) No. 525/2013, which has set a target of a 30% reduction in non-ETS sector emissions by 2030 relative to 2005 levels.

As per the EU guidance document *Guidance on Integrating Climate Change and Biodiversity into Environmental Impact Assessment* (European Commission, 2013) the climate baseline is first established by reference to EPA data on annual GHG emissions (see Section 9.3.3). Thereafter the impact of the proposed development on climate is determined. Emissions from road traffic associated with the proposed development have the potential to emit carbon dioxide (CO_2) which will impact climate.

The UK Highways Agency has published an updated DMRB guidance document in relation to climate impact assessments *LA 114 Climate* (UK Highways Agency, 2019b). The following scoping criteria are used to determine whether a detailed climate assessment is required for a proposed project during the operational stage. During the operational phase, if any of the road links impacted by the proposed development meet the below criteria then further assessment is required.

- A change of more than 10% in AADT;
- A change of more than 10% to the number of heavy duty vehicles; and
- A change in daily average speed of more than 20 km/hr.

None of the road links impacts by the proposed development satisfy the above criteria and a quantitative assessment of the impact of traffic emissions on climate is not necessary as there is no potential for significant impacts to climate.

The EU guidance (2013) also states indirect GHG emissions as a result of a development must be considered, this includes emissions associated with energy usage. In addition to the EU guidance, the Institute of Environmental Management and Assessment (IEMA) guidance note on 'Assessing Greenhouse Gas Emissions and Evaluating their Significance' (IEMA, 2022) states that "the crux of significance regarding impact on climate is not whether a project emits GHG emissions, nor even the magnitude of GHG emissions alone, but whether it contributes to reducing GHG emissions relative to a comparable baseline consistent with a trajectory towards net zero by 2050". Mitigation has taken a leading role within the guidance compared to the previous edition published in 2017. Early stakeholder engagement is key and therefore mitigation should be considered from the outset of the project and continue throughout the project's lifetime in order to maximise GHG emissions savings.

The Energy Statement prepared by Waterman Moylan Consulting Engineers in relation to this assessment has been reviewed and used to inform the operational phase climate assessment. This report outlines a number of measures in relation to energy usage from the proposed development primarily in relation to heat and electricity. A number of measures have been incorporated into the overall design of the development to reduce the impact to climate where possible, in line with the objectives of the IEMA guidance (2022).

9.3 THE EXISTING RECEIVING ENVIRONMENT (BASELINE SITUATION)

9.3.1 Meteorological Data

A key factor in assessing temporal and spatial variations in air quality is the prevailing meteorological conditions. Depending on wind speed and direction, individual receptors may experience very significant variations in pollutant levels under the same source strength (i.e. traffic levels) (WHO, 2006). Wind is of key importance in dispersing air pollutants and for ground level sources, such as traffic emissions, pollutant concentrations are generally inversely related to wind speed. Thus, concentrations of pollutants derived from traffic sources will generally be greatest under very calm conditions and low wind speeds when the movement of air is restricted. In relation to PM₁₀, the situation is more complex due to the range of sources of this pollutant. Smaller particles (less than PM_{2.5}) from traffic sources will be dispersed more rapidly at higher wind speeds. However, fugitive emissions of coarse particles (PM_{2.5} - PM₁₀) will actually increase at higher wind speeds. Thus, measured levels of PM₁₀ will be a non-linear function of wind speed.

The nearest representative weather station collating detailed weather records is Casement Aerodrome meteorological station, which is located approximately 5.5 km south-east of the site. Casement Aerodrome met data has been examined to identify the prevailing wind direction and average wind speeds over a five-year period (see Figure 9.1). For data collated during five representative years (2017 - 2021), the predominant wind direction is westerly to south-westerly with a mean wind speed of 5.5 m/s over the 30-year period 1990 - 2010 (Met Éireann, 2022).

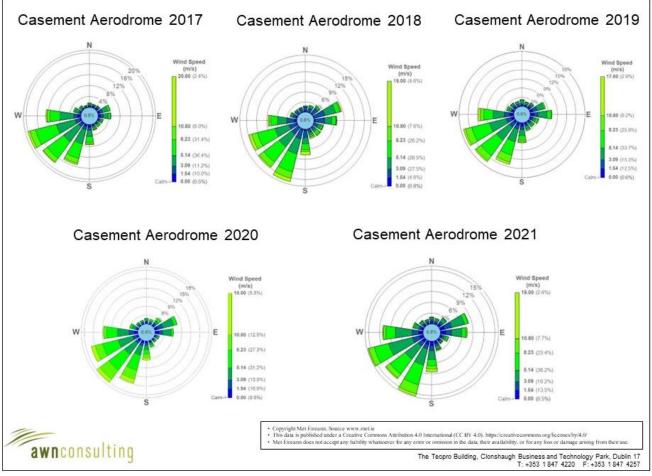


Figure 9.1: Casement Aerodrome Windrose 2017 – 2021

9.3.2 Baseline Air Quality

Air quality monitoring programs have been undertaken in recent years by the EPA. The most recent annual report on air quality in Ireland is "*Air Quality In Ireland 2020*" (EPA, 2021a). The EPA website details the range and scope of monitoring undertaken throughout Ireland and provides both monitoring data and the results of previous air quality assessments (EPA, 2022).

As part of the implementation of the Air Quality Standards Regulations 2011 (S.I. No. 180 of 2011), as amended, four air quality zones have been defined in Ireland for air quality management and assessment purposes (EPA, 2021b). Dublin is defined as Zone A and Cork as Zone B. Zone C is composed of 23 towns with a population of greater than 15,000. The remainder of the country, which represents rural Ireland but also includes all towns with a population of less than 15,000, is defined as Zone D.

In terms of air monitoring and assessment, the proposed development site in Celbridge is within Zone C (EPA, 2022). The long-term monitoring data has been used to determine background concentrations for the key pollutants in the region of the proposed development. The background concentration accounts for all non-traffic derived emissions (e.g. natural sources, industry, home heating etc.).

In 2020 the EPA reported (EPA, 2021a) that Ireland was compliant with EU legal air quality limits at all locations, however this was largely due to the reduction in traffic due to Covid-19 restrictions. The EPA *Air Quality in Ireland 2020* report details the effect that the Covid-19 restrictions had on air monitoring stations, which included reductions of up to 50% at some monitoring stations which have traffic as a dominant source. The report also notes that CSO figures show that while traffic volumes are still slightly below 2019 levels, they have significantly increased since 2020 levels. 2020 concentrations are therefore predicted to be an exceptional year and not consistent with long-term trends. For this reason, they have not been included in the baseline section and previous long-term data has been used to determine baseline levels of pollutants in the vicinity of the proposed development.

Long-term NO₂ monitoring was carried out at the Zone C locations of Kilkenny, Portlaoise and Dundalk for the period 2015 – 2019 (EPA, 2021a). Long term average concentrations are significantly below the annual average limit of 40 μ g/m³. Average results range from 5 – 14 μ g/m³. The NO₂ annual average for this five-year period suggests an upper average limit of no more than 13 μ g/m³ (Table 9.2) as a background concentration for the Zone C locations. Based on the above information a conservative estimate of the current background NO₂ concentration for the region of the proposed development is 14 μ g/m³.

Station	Averaging Period Note 1	Year				
Station		2015	2016	2017	2018	2019
Kilkenny	Annual Mean NO ₂ (µg/m ³)	5	7	5	6	5
Kiikenny	Max 1-hr NO ₂ (µg/m ³)	70	51	58	71	59
Portlaoise	Annual Mean NO ₂ (µg/m ³)	10	11	11	11	11
	Max 1-hr NO ₂ (µg/m ³)	84	86	80	119	77
Dundalk	Annual Mean NO ₂ (µg/m ³)	-	-	-	14	12
Duriuaik	Max 1-hr NO ₂ (µg/m ³)	-	-	-	91	144

Note 1 Annual average limit value of 40 μg/m³ and hourly limit value of 200 μg/m³ (EU Council Directive 2008/50/EC & S.I. No. 180 of 2011).

Table 9.2: Background NO₂ Concentrations In Zone C Locations (µg/m³)

Continuous PM₁₀ monitoring was carried out at the Zone C locations of Galway, Ennis, Portlaoise and Dundalk from 2015 - 2019. These showed an upper average limit of no more than 18 μ g/m³ (Table 9.3). Levels range from 10 – 18 μ g/m³ over the five year period with at most 12 exceedances of the 24-hour limit value of 50 μ g/m³ in Ennis in 2019 (35 exceedances are permitted per year) (EPA, 2021a). Based on the EPA data, a conservative estimate of the current background PM₁₀ concentration in the region of the proposed development is 15 μ g/m³

Station	Averaging Period Note 1	Year	Year				
Station	Averaging Feriou	2015	2016	2017	2018	2019	
Galway	Annual Mean PM ₁₀ (µg/m ³)	15	15	-	15	13	
Galway	24-hr Mean > 50 μg/m³ (days)	2	3	-	0	0	
Ennis	Annual Mean PM ₁₀ (µg/m ³)	18	17	16	16	18	
LIIIIS	24-hr Mean > 50 µg/m ³ (days)	10	12	9	4	12	
Portlaoise	Annual Mean PM ₁₀ (µg/m ³)	12	12	10	11	15	
1 UTIAUSE	24-hr Mean > 50 µg/m ³ (days)	1	1	0	1	0	
Dundalk	Annual Mean PM ₁₀ (µg/m ³)	-	-	-	15	14	
Dunualk	24-hr Mean > 50 µg/m ³ (days)	-	-	-	0	2	

Note 1 Annual average limit value of 40 μg/m³ and 24-hour limit value of 50 μg/m³ (EU Council Directive 2008/50/EC & S.I. No. 180 of 2011).

Table 9.3: Background PM₁₀ Concentrations In Zone C Locations (µg/m³)

Monitoring of both PM₁₀ and PM_{2.5} takes place at the station in Ennis which allows for the PM_{2.5}/PM₁₀ ratio to be calculated. Average PM_{2.5} levels in Ennis over the period 2015 - 2019 ranged from 10 - 14 μ g/m³, with a PM_{2.5}/PM₁₀ ratio ranging from 0.63 - 0.78 (EPA,2021a). Based on this information, a conservative ratio of 0.8 was used to generate an existing PM_{2.5} concentration in the region of the development of 12 μ g/m³.

9.3.3 Climate Baseline

Anthropogenic emissions of greenhouse gases in Ireland included in the EU 2020 strategy are outlined in the most recent review by the EPA which details provisional emissions up to 2020 (EPA, 2021b). The data published in 2021 states that Ireland will exceed its 2020 annual limit set under the EU's Effort Sharing Decision (ESD), 406/2009/EC1 by an estimated 6.73 Mt. For 2021, total national greenhouse gas emissions are estimated to be 57.70 million tonnes carbon dioxide equivalent (Mt CO₂eq) with 44.38 MtCO₂eq of emissions associated with the ESD sectors for which compliance with the EU targets must be met. Agriculture is the largest contributor in 2021 at 37.1% of the total, with the transport sector accounting for 17.9% of emissions of CO₂.

GHG emissions for 2020 are estimated to be 3.6% lower than those recorded in 2019. Emission reductions have been recorded in 6 of the last 10 years. However, compliance with the annual EU targets has not been met for five years in a row. Emissions from 2016 – 2020 exceeded the annual EU targets by 0.29 MtCO₂eq, 2.94 MtCO₂eq, 5.57 MtCO₂eq,6.85 MtCO₂eq and 6.73 MtCO₂eq respectively. Agriculture is consistently the largest contributor to emissions with emissions from the transport and energy sectors being the second and third largest contributors respectively in recent years.

The EPA 2020 GHG Emissions Projections Report for 2020 – 2040 (EPA, 2021c) notes that there is a longterm projected decrease in greenhouse gas emissions as a result of inclusion of new climate mitigation policies and measures that formed part of the National Development Plan (NDP) which was published in 2018 and the Climate Action Plan published in 2019. Implementation of these are classed as a "*With Additional Measures scenario*" for future scenarios. A change from generating electricity using coal and peat to wind power and diesel vehicle engines to electric vehicle engines are envisaged under this scenario. While emissions are projected to decrease in these areas, emissions from agriculture are projected to grow steadily due to an increase in animal numbers. However, over the period 2013 to 2020 Ireland is projected to cumulatively exceed its compliance obligations with the EU's Effort Sharing Decision (Decision No. 406/2009/EC) 2020 targets by approximately 12.2MtCO₂eq under the "With Existing Measures" scenario and under the "With Additional Measures" scenario. The projections indicate that Ireland can meet its non-ETS EU targets over the period 2021 – 2030 assuming full implementation of the Climate Action Plan and the use of the flexibilities available (EPA, 2021c).

9.3.4 Sensitivity of the Receiving Environment

In line with the IAQM guidance document (2014) prior to assessing the impact of dust from a proposed development, the sensitivity of the area must first be assessed as outlined below. Both receptor sensitivity and proximity to proposed works areas are taken into consideration. For the purposes of this assessment, high sensitivity receptors are regarded as residential properties where people are likely to spend the majority of their time. Commercial properties and places of work are regarded as medium sensitivity while low sensitivity receptors are places where people are present for short periods or do not expect a high level of amenity.

In terms of receptor sensitivity to dust soiling, there are approximately 27 high sensitivity residential properties within 20m of the southern site boundary along Willow Square, Willow Crescent and Willow Lawn. Based on the IAQM criteria outlined in Table 9.4, the worst-case sensitivity of the area to dust soiling is considered high.

Receptor	Number Of	Distance from source (m)				
Sensitivity	Receptors	<20	<50	<100	<350	
High	>100	High	High	Medium	Low	
	10-100	High	Medium	Low	Low	
	1-10	Medium	Low	Low	Low	
Medium	>1	Medium	Low	Low	Low	
Low	>1	Low	Low	Low	Low	

 Table 9.4: Sensitivity of the Area to Dust Soiling Effects on People and Property

In addition to sensitivity to dust soiling, the IAQM guidelines also outline the assessment criteria for determining the sensitivity of the area to human health impacts. The criteria take into consideration the current annual mean PM_{10} concentration, receptor sensitivity based on type and the number of receptors affected within various distance bands from the construction works. A conservative estimate of the current annual mean PM_{10} concentration in the vicinity of the proposed development is 15 µg/m³ and there are approximately 27 high sensitivity receptors located within 20m of the site boundary. Based on the IAQM criteria outlined in Table 9.5, the worst case sensitivity of the area to human health impacts is considered low.

Receptor Sensitivity	Annual Mean PM ₁₀	Number Of	Distance from source (m)				
	Concentration	Receptors	<20	<50	<100	<200	<350
High	< 24 µg/m ³	>100	Medium	Low	Low	Low	Low
		10-100	Low	Low	Low	Low	Low
		1-10	Low	Low	Low	Low	Low
Medium	< 24 µg/m ³	>10	Low	Low	Low	Low	Low
		1-10	Low	Low	Low	Low	Low
Low	< 24 µg/m ³	>1	Low	Low	Low	Low	Low

Table 9.5: Sensitivity of the Area to Human Health Impacts

9.4 CHARACTERISTICS OF THE PROPOSED DEVELOPMENT

The proposed development will consist of the construction of 344 no. residential units, a childcare facility, communal and public open space, landscaping, car and cycle parking spaces, a secondary link street from Dublin Road and Shinkeen Road, including provision of vehicular accesses, associated internal roads, pedestrian and cycle paths, bin storage, public lighting, ESB substations, pumping station and all associated site and infrastructural works. The site is located at Ballyoulster and Donaghcumper, Celbridge, Co. Kildare. A full description of the development can be found in Chapter 2.

Impacts to air quality and climate can occur during both the construction and operational stages of the development. During the construction stage the main source of air quality impacts will be as a result of fugitive dust emissions from site activities. Emissions from construction vehicles and machinery have the potential to impact climate. The primary sources of air and climatic emissions in the operational context are deemed long term and will involve the change in traffic flows or congestion in the local areas which are associated with the development. The following describes the primary sources of potential air quality and climate impacts which have been assessed as part of this EIAR.

9.5 POTENTIAL IMPACT OF THE PROPOSED DEVELOPMENT

9.5.1 Construction Stage

Air Quality

The greatest potential impact on air quality during the construction phase of the proposed development is from construction dust emissions and the potential for nuisance dust. While construction dust tends to be deposited within 350 m of a construction site, the majority of the deposition occurs within the first 50 m. The extent of any dust generation depends on the nature of the dust (soils, peat, sands, gravels, silts etc.) and the nature of the construction activity. In addition, the potential for dust dispersion and deposition depends on local meteorological factors such as rainfall, wind speed and wind direction. A review of Casement Aerodrome meteorological data (see Section 9.3.1) indicates that the prevailing wind direction is westerly to south-westerly and wind speeds are generally moderate in nature. In addition, dust generation is considered negligible on days where rainfall is greater than 0.2 mm. A review of historical 30 year average data for Casement Aerodrome indicates that on average 183 days per year have rainfall over 0.2 mm (Met Eireann, 2022) and therefore it can be determined that 50% of the time dust generation will be reduced. It is important to note that the potential impacts associated with the construction phase of the proposed development are short-term in nature.

In order to determine the level of dust mitigation required during the proposed works, the potential dust emission magnitude for each dust generating activity needs to be taken into account, in conjunction with the previously established sensitivity of the area (see Section 9.3.4). The dust emission magnitude is described below for each of the four major dust generating activities: Demolition, Earthworks, Construction and Trackout. This is then combined with the sensitivity of the area (see Section 9.3.4) and the overall level of risk is determined.

Demolition

There is no demolition required for the proposed development and therefore no impact is predicted.

Earthworks

Earthworks typically involve excavating material, loading and unloading of materials, tipping and stockpiling activities. Activities such as levelling the site and landscaping works are also considered under this category. Following the IAQM guidance (2014), dust emission magnitude from earthworks can be classified as small, medium and large and are described below.

- Large: Total site area > 10,000 m², potentially dusty soil type (e.g. clay which will be prone to suspension when dry due to small particle size), >10 heavy earth moving vehicles active at any one time, formation of bunds > 8 m in height, total material moved >100,000 tonnes;
- Medium: Total site area 2,500 m² 10,000 m², moderately dusty soil type (e.g. silt), 5-10 heavy earth moving vehicles active at any one time, formation of bunds 4 8 m in height, total material moved 20,000 100,000 tonnes; and

• Small: Total site area < 2,500 m², soil type with large grain size (e.g. sand), < 5 heavy earth moving vehicles active at any one time, formation of bunds < 4 m in height, total material moved < 20,000 tonnes, earthworks during wetter months.

Under the IAQM guidance (2014) the proposed earthworks can be classified as large as worst-case as the total site area is 12.2 hectares. Combining the large dust emission magnitude with the sensitivity of the area (Section 9.3.4) results in an overall high risk of dust soiling impacts and a low risk of human health impacts as a result of earthworks activities prior to mitigation (see Table 9.6).

Sensitivity of Area	Dust Emission Magnitude				
	Large Medium Small				
High	High Risk	Medium Risk	Low Risk		
Medium	Medium Risk	Medium Risk	Low Risk		
Low	Low Risk	Low Risk	Negligible		

Table 9.6: Risk of Dust Impacts - Earthworks

Construction

Dust emission magnitude from construction can be classified as small, medium or large based on the definitions from the IAQM guidance as transcribed below:

- Large: Total building volume > 100,000 m³, on-site concrete batching, sandblasting;
- **Medium:** Total building volume 25,000 m³ 100,000 m³, potentially dusty construction material (e.g. concrete), on-site concrete batching;
- **Small:** Total building volume < 25,000 m³, construction material with low potential for dust release (e.g. metal cladding or timber).

The dust emission magnitude from construction associated with the proposed development works can be classified as medium as the total building volume to be constructed will be between $25,000 - 100,000 \text{ m}^3$. Therefore, there is an overall medium risk of dust soiling impacts and a low risk of human health impacts as a result of the proposed construction activities prior to mitigation (Table 9.7).

Sensitivity of Area	Dust Emission Magnitude				
	Large Medium Small				
High	High Risk	Medium Risk	Low Risk		
Medium	Medium Risk	Medium Risk	Low Risk		
Low	Low Risk	Low Risk	Negligible		

Table 9.7: Risk of Dust Impacts – Construction

Trackout

Factors which determine the dust emission magnitude associated with trackout are vehicle size, vehicle speed, number of vehicles, road surface material and duration of movement. Dust emission magnitude from trackout can be classified as small, medium or large based on the definitions from the IAQM guidance as transcribed below:

- Large: > 50 HGV (> 3.5 t) outward movements in any one day, potentially dusty surface material (e.g. high clay content), unpaved road length > 100 m;
- Medium: 10 50 HGV (> 3.5 t) outward movements in any one day, moderately dusty surface material (e.g. high clay content), unpaved road length 50 100 m;

• Small: < 10 HGV (> 3.5 t) outward movements in any one day, surface material with low potential for dust release, unpaved road length < 50 m.

Dust emission magnitude from trackout can be classified as medium under IAQM guidance as there are likely to be on average 10 - 50 outward HGV movements per day during the construction period of the development. This results in an overall medium risk of dust soiling impacts and a low risk of human health impacts as a result of the proposed trackout activities prior to mitigation (see Table 9.8).

Sensitivity of Area	Dust Emission Magnitude				
	Large Medium Small				
High	High Risk	Medium Risk	Low Risk		
Medium	Medium Risk	Medium Risk	Low Risk		
Low	Low Risk	Low Risk	Negligible		

Table 9.8: Risk of Dust Impacts – Trackout

Summary of Dust Emission Risk

The risk of dust impacts as a result of the proposed development are summarised in Table 9.9 for each activity. The magnitude of risk determined is used to prescribe the level of site specific mitigation required for each activity in order to prevent significant impacts occurring.

Overall, in order to ensure that no dust nuisance occurs during the earthworks, construction and trackout activities, a range of dust mitigation measures associated with a high risk of dust impacts will be implemented. In the absence of mitigation dust soiling impacts from demolition and construction works are predicted to be short-term, localised, negative and sight.

Potential Impact	Dust Emission Risk					
	Demolition Earthworks Construction Trackout					
Magnitude	n/a	Large	Medium	Medium		
Dust Soiling	n/a	High Risk	Medium Risk	Medium Risk		
Human Health	n/a	Low Risk	Low Risk	Low Risk		

Table 9.9: Summary of Dust Impact Risk used to Define Site-Specific Mitigation

There is also the potential for traffic emissions to impact air quality in the short-term over the construction phase. Particularly due to the increase in HGVs accessing the site. The construction stage traffic has been reviewed and a detailed air quality assessment has been scoped out as none of the road links impacted by the proposed development satisfy the DMRB assessment criteria in Section 9.2.2. It can therefore be determined that the construction stage traffic will have an imperceptible, neutral and short-term impact on air quality.

Climate

There is the potential for a number of greenhouse gas emissions to atmosphere during the construction of the development. Construction vehicles, generators etc., may give rise to CO₂ and N₂O emissions. The Institute of Air Quality Management document *Guidance on the Assessment of Dust from Demolition and Construction* (IAQM, 2014) states that site traffic and plant is unlikely to make a significant impact on climate. Therefore, the potential impact on climate is considered to be imperceptible, neutral and short-term.

Human Health

Dust emissions from the construction phase of the proposed development have the potential to impact human health through the release of PM_{10} and $PM_{2.5}$ emissions. As per Section 9.3.4 and Table 9.5, the area is of low sensitivity to human health impacts from construction dust emissions. There is at most a low risk of human health impacts as a result of the construction phase of the proposed development. Therefore, in the absence of mitigation there is the potential for imperceptible, negative, short-term impacts to human health as a result of the proposed development.

9.5.2 Operational Phase

Air Quality

There is the potential for a number of emissions to the atmosphere during the operational phase of the development. In particular, the traffic-related air emissions may generate quantities of air pollutants such as NO_2 , PM_{10} and $PM_{2.5}$. However, impacts from these emissions have been screened out using the UK DMRB guidance (UK Highways Agency, 2019), on which the TII guidance (2011) was based. None of the road links impacted by the proposed development satisfy the screening criteria (see Section 9.2.2) and an assessment of the impact of traffic emissions on ambient air quality is not necessary as there is no potential for significant impacts. It can therefore be determined that the impact to air quality from traffic emissions during the operational stage is neutral, localised, long-term and imperceptible.

Climate

Climate change has the potential to alter weather patterns and increase the frequency of rainfall in future years. As a result of this there is the potential for flooding related impacts on site in future years. However, adequate attenuation and drainage have been provided for to account for increased rainfall in future years as part of the design of this development. Therefore, the impact will be long-term, localised, neutral and imperceptible.

There is also the potential for increased traffic volumes to impact climate. The change in AADT values is not of the magnitude to require a detailed climate assessment as per the DMRB screening criteria outlined in Section 9.2.3 (UK Highways Agency, 2019b). It can therefore be determined that traffic related CO₂ emissions during the operational phase are long-term, localised, neutral and imperceptible.

The proposed development has been designed to reduce the impact to climate where possible. A number of measures have been incorporated into the design to ensure the operational phase emissions are minimised. These are outlined fully within the Energy Statement prepared by Waterman Moylan Consulting Engineers and are summarised below.

The development will be a Nearly Zero Energy Building (NZEB) in accordance with the Part L2021 requirements. Each building will have a Building Energy Rating (BER) that will comply with the Part L requirements. The following measures, or similar will be incorporated into the proposed development to achieve a more energy efficient (i.e. less carbon intensive) design. All measures will be reviewed at the detailed design stage and the most appropriate options will be implemented.

- High performance U-values;
- Improved air tightness;
- Improved thermal transmittance and thermal bridging;
- Use of renewable technologies to ensure energy consumption is in line with the Part L 2021 requirements

It is proposed to incorporate bicycle parking spaces within the proposed development to promote the use of sustainable transport. Overall these measures will aid in reducing the impact to climate during the operational phase of the proposed development.

Human Health

Traffic related air emissions have the potential to impact air quality which can affect human health. However, the traffic generated by the proposed development does not satisfy the assessment criteria to require an air modelling assessment as outlined in Section 9.2.2 and therefore there is no potential for significant impacts. It can be determined that the impact to human health during the operational stage is neutral, local, long-term and imperceptible.

9.6 'DO NOTHING' IMPACT

Under the Do-Nothing Scenario no construction works will take place and the previously identified impacts of fugitive dust and particulate matter emissions and emissions from equipment and machinery will not occur. Impacts from increased traffic volumes and associated air emissions will also not occur. The ambient air quality at the site will remain as per the baseline and will change in accordance with trends within the wider area (including influences from new developments in the surrounding area, changes in road traffic, etc.). Therefore, this scenario can be considered neutral in terms of both air quality and climate.

9.7 AVOIDANCE, REMEDIAL & MITIGATION MEASURES

There is the potential for a number of impacts to air quality and climate during the construction and operational phases of the proposed development. Construction dust emissions are considered the primary source of air quality impacts associated with the proposed development. To avoid any potential significant impacts the following mitigation measures have been proposed.

9.7.1 Construction Phase

AIR CONST 1: Dust Control

The proactive control of fugitive dust will ensure the prevention of significant emissions. The key aspects of controlling dust are listed below. Full details of the dust management plan can be found in Appendix 9.2. These measures have been incorporated into the overall Construction Environmental Management Plan (CEMP) prepared in respect of the proposed development.

In summary the measures which will be implemented will include:

- Hard surface roads will be swept to remove mud and aggregate materials from their surface while any unsurfaced roads will be restricted to essential site traffic.
- Any road that has the potential to give rise to fugitive dust will be regularly watered, as appropriate, during dry and/or windy conditions.
- Vehicles exiting the site shall make use of a wheel wash facility prior to entering onto public roads.
- Vehicles using site roads will have their speed restricted, and this speed restriction must be enforced rigidly. On any un-surfaced site road, this will be 20 kph.
- Public roads outside the site will be regularly inspected for cleanliness and cleaned as necessary.
- Material handling systems and site stockpiling of materials will be designed and laid out to minimise exposure to wind. Water misting or sprays will be used as required if particularly dusty activities are necessary during dry or windy periods.
- During movement of materials both on and off-site, trucks will be stringently covered with tarpaulin at all times. Before entrance onto public roads, trucks will be adequately inspected to ensure no potential for dust emissions.

At all times, these procedures will be strictly monitored and assessed. In the event of dust nuisance occurring outside the site boundary, movements of materials likely to raise dust will be curtailed and satisfactory procedures implemented to rectify the problem before the resumption of construction operations.

CLIMATE CONST 1: Construction Controls

Impacts to climate during the construction stage are predicted to be imperceptible however, good practice measures can be incorporated to ensure potential impacts are lessened. These include:

- Prevention of on-site or delivery vehicles from leaving engines idling, even over short periods.
- Ensure all plant and machinery are well maintained and inspected regularly.
- Minimising waste of materials due to poor timing or over ordering on site will aid to minimise the embodied carbon footprint of the site.

9.7.2 Operational Stage

The impact of the operational traffic associated with proposed development on air quality and climate is predicted to be imperceptible with respect to the operational phase in the long term. Therefore, no site specific mitigation measures are required other than those set out in Section 9.5.2 in relation to operational phase energy usage.

9.8 PREDICTED IMPACTS OF THE PROPOSED DEVELOPMENT

9.8.1 Construction Stage

Air Quality

Once the dust minimisation measures outlined in Section 9.7 and Appendix 9.2 are implemented, the impact of the proposed development in terms of dust soiling will be short-term, negative, localised and imperceptible at nearby receptors.

Climate

According to the IAQM guidance (2014) site traffic, plant and machinery are unlikely to have a significant impact on climate. Therefore, the predicted impact is short-term, neutral and imperceptible.

Human Health

Best practice mitigation measures are proposed for the construction phase of the proposed development which will focus on the pro-active control of dust and other air pollutants to minimise generation of emissions at source. The mitigation measures that will be put in place during construction of the proposed development will ensure that the impact of the development complies with all EU ambient air quality legislative limit values which are based on the protection of human health. Therefore, the impact of construction of the proposed development is likely to be negative, short-term and imperceptible with respect to human health.

9.8.2 Operational Stage

Air Quality

None of the road links impacted by the proposed development satisfied the assessment criteria outlined in Section 9.2.2 for carrying out a detailed air modelling assessment. Therefore, there is no potential for significant impacts to air quality as a result of traffic related to the proposed development. It can therefore be determined that the impact to air quality as a result of increased traffic volumes during the operational phase of the proposed development is localised, neutral, imperceptible and long-term.

Climate

None of the road links impacted by the proposed development satisfied the assessment criteria outlined in Section 9.2.3 for carrying out a detailed air modelling assessment of CO_2 emissions from traffic. Therefore, there is no potential for significant impacts to climate as a result of traffic related to the proposed development. It can therefore be determined that the impact to climate as a result of increased traffic volumes during the operational phase of the proposed development is neutral, imperceptible and long-term. In addition, the proposed development has been designed to reduce the impact to climate where possible during operation.

Human Health

emissions of air pollutants are predicted to be significantly below the ambient air quality standards which are based on the protection of human health. Therefore, impacts to human health are long-term, neutral and imperceptible.

9.9 CUMULATIVE IMPACTS

According to the IAQM guidance (2014) should the construction phase of the proposed development coincide with the construction of any other permitted developments within 350m of the site then there is the potential for cumulative dust impacts to the nearby sensitive receptors. A review of recent planning permissions for the area was conducted and it was found that there were no relevant sites for which cumulative impacts may occur should their construction phase and that of the proposed development overlap. Therefore, cumulative impacts are not predicted.

Cumulative impacts have been incorporated into the traffic data supplied for the operational stage air and climate assessments where such information was available which includes traffic associated with existing developments in the area. The operational phase assessment has determined there will be long-term, neutral and imperceptible impact to air quality and climate during the operational stage.

9.10 MONITORING

9.10.1 Construction Stage

Monitoring of construction dust deposition along the site boundary to nearby sensitive receptors during the construction phase of the proposed development is recommended to ensure mitigation measures are working satisfactorily. This can be carried out using the Bergerhoff method in accordance with the requirements of the German Standard VDI 2119. The Bergerhoff Gauge consists of a collecting vessel and a stand with a protecting gauge. The collecting vessel is secured to the stand with the opening of the collecting vessel located approximately 2m above ground level. The TA Luft limit value is 350 mg/(m^{2*}day) during the monitoring period between 28 - 32 days.

9.10.2 Operational Stage

There is no monitoring recommended for the operational phase of the development as impacts to air quality and climate are predicted to be imperceptible.

9.11 REINSTATEMENT

Not applicable to air quality and climate.

9.12 INTERACTIONS

Air quality does not have a significant number of interactions with other topics. The most significant interactions are between population and human health and air quality. An adverse impact due to air quality in either the demolition, construction or operational phase has the potential to cause health and dust nuisance issues. The mitigation measures that will be put in place at the proposed development will ensure that the impact of the proposed development complies with all ambient air quality legislative limits and therefore the predicted impact is short-term, negative and imperceptible with respect to the construction phase and long-term, neutral and imperceptible with respect to the operational phase.

Interactions between air quality and traffic can be significant. With increased traffic movements and reduced engine efficiency, i.e. due to congestion, the emissions of vehicles increase. The impacts of the proposed development on air quality are assessed by reviewing the change in annual average daily traffic on roads close to the site. In this assessment, the impact of the interactions between traffic and air quality are considered to be imperceptible.

With the appropriate mitigation measures to prevent fugitive dust emissions, it is predicted that there will be no significant interactions between air quality and land and soils. No other significant interactions with air quality have been identified.

9.13 DIFFICULTIES ENCOUNTERED IN COMPILING

There were no difficulties encountered when compiling this assessment.

9.14 REFERENCES

BRE (2003) Controlling Particles, Vapours & Noise Pollution From Construction Sites

Department of the Environment, Heritage and Local Government (DEHLG) (2004) Quarries and Ancillary Activities, Guidelines for Planning Authorities

Environmental Protection Agency (2015) Advice Notes for Preparing Environmental Impact Statements - Draft

Environmental Protection Agency (2022) Guidelines on the Information to be Contained in Environmental Impact Assessment Reports

Environmental Protection Agency (2021a) Air Quality Monitoring Report 2020 (& previous annual reports)

Environmental Protection Agency (2021b) Ireland's Provisional Greenhouse Gas Emissions 1990 – 2020

Environmental Protection Agency (2021c) GHG Emissions Projections Report - Ireland's Greenhouse Gas Emissions Projections 2020 - 2040

Environmental Protection Agency (2022) EPA website Available at: http://www.airquality.ie

European Commission (2013) *Guidance on Integrating Climate Change and Biodiversity into Environmental Impact Assessment*

German VDI (2002) Technical Guidelines on Air Quality Control – TA Luft Government of Ireland (2015) Climate Action and Low Carbon Development Act

Government of Ireland (2019a) Climate Action Plan 2019

Government of Ireland (2019b) Draft General Scheme of the Climate Action (Amendment) Bill 2019

Government of Ireland (2021a) Climate Action Plan 2021

Government of Ireland (2021b) Climate Action and Low Carbon Development (Amendment) Act 2021

Institute of Air Quality Management (IAQM) (2014) Guidance on the Assessment of Dust from Demolition and Construction Version 1.1

Institute of Environmental Management and Assessment (IEMA) (2022) Assessing Greenhouse Gas Emissions and Evaluating their Significance

Met Éireann (2022) Met Eireann website: https://www.met.ie/

The Scottish Office (1996) Planning Advice Note PAN50 Annex B: Controlling the Environmental Effects of Surface Mineral Workings Annex B: The Control of Dust at Surface Mineral Workings

Transport Infrastructure Ireland (2011) Guidelines for the Treatment of Air Quality During the Planning and Construction of National Road Schemes

UK DEFRA (2016) Part IV of the Environment Act 1995: Local Air Quality Management, LAQM. PG(16)

UK DEFRA (2018) Part IV of the Environment Act 1995: Local Air Quality Management, LAQM.TG(16)

UK Highways Agency (2019a) UK Design Manual for Roads and Bridges (DMRB), Volume 11, Environmental Assessment, Section 3 Environmental Assessment Techniques, Part 1 LA 105 Air quality

UK Highways Agency (2019b) UK Design Manual for Roads and Bridges (DMRB) Volume 11 Environmental Assessment, Section 3 Environmental Assessment Techniques, Part 14 LA 114 Climate

UK Office of Deputy Prime Minister (2002) Controlling the Environmental Effects of Recycled and Secondary Aggregates Production Good Practice Guidance

USEPA (1997) Fugitive Dust Technical Information Document for the Best Available Control Measures

World Health Organisation (2006) Air Quality Guidelines - Global Update 2005 (and previous Air Quality Guideline Reports 1999 & 2000)

APPENDIX 9.1 - AMBIENT AIR QUALITY STANDARDS

National standards for ambient air pollutants in Ireland have generally ensued from Council Directives enacted in the EU (& previously the EC & EEC). The initial interest in ambient air pollution legislation in the EU dates from the early 1980s and was in response to the most serious pollutant problems at that time which was the issue of acid rain. As a result of this sulphur dioxide, and later nitrogen dioxide, were both the focus of EU legislation. Linked to the acid rain problem was urban smog associated with fuel burning for space heating purposes. Also apparent at this time were the problems caused by leaded petrol and EU legislation was introduced to deal with this problem in the early 1980s.

In recent years the EU has focused on defining a basis strategy across the EU in relation to ambient air quality. In 1996, a Framework Directive, Council Directive 96/62/EC, on ambient air quality assessment and management was enacted. The aims of the Directive are fourfold. Firstly, the Directive's aim is to establish objectives for ambient air quality designed to avoid harmful effects to health. Secondly, the Directive aims to assess ambient air quality on the basis of common methods and criteria throughout the EU. Additionally, it is aimed to make information on air quality available to the public via alert thresholds and fourthly, it aims to maintain air quality where it is good and improve it in other cases.

As part of these measures to improve air quality, the European Commission has adopted proposals for daughter legislation under Directive 96/62/EC. The first of these directives to be enacted, Council Directive 1999/30/EC, has been passed into Irish Law as S.I. No 271 of 2002 (Air Quality Standards Regulations 2002), and has set limit values which came into operation on 17th June 2002. The Air Quality Standards Regulations 2002 detail margins of tolerance, which are trigger levels for certain types of action in the period leading to the attainment date. The margin of tolerance varies from 60% for lead, to 30% for 24-hour limit value for PM₁₀, 40% for the hourly and annual limit value for NO₂ and 26% for hourly SO₂ limit values. The margin of tolerance commenced from June 2002, and started to reduce from 1 January 2003 and every 12 months thereafter by equal annual percentages to reach 0% by the attainment date. A second daughter directive, EU Council Directive 2000/69/EC, has published limit values for both carbon monoxide and benzene in ambient air. This has also been passed into Irish Law under the Air Quality Standards Regulations 2002.

The most recent EU Council Directive on ambient air quality was published on the 11/06/08 which has been transposed into Irish Law as S.I. 180 of 2011. Council Directive 2008/50/EC combines the previous Air Quality Framework Directive and its subsequent daughter directives. Provisions were also made for the inclusion of new ambient limit values relating to PM_{2.5}. The margins of tolerance specific to each pollutant were also slightly adjusted from previous directives. In regards to existing ambient air quality standards, it is not proposed to modify the standards but to strengthen existing provisions to ensure that non-compliances are removed. In addition, new ambient standards for PM2.5 are included in Directive 2008/50/EC. The approach for PM2.5 was to establish a target value of 25 µg/m³, as an annual average (to be attained everywhere by 2010) and a limit value of 25 µg/m³, as an annual average (to be attained everywhere by 2015), coupled with a target to reduce human exposure generally to PM_{2.5} between 2010 and 2020. This exposure reduction target will range from 0% (for $PM_{2.5}$ concentrations of less than 8.5 μ g/m³ to 20% of the average exposure indicator (AEI) for concentrations of between 18 - 22 µg/m³). Where the AEI is currently greater than 22 µg/m³ all appropriate measures should be employed to reduce this level to 18 µg/m³ by 2020. The AEI is based on measurements taken in urban background locations averaged over a three year period from 2008 - 2010 and again from 2018-2020. Additionally, an exposure concentration obligation of 20 µg/m³ was set to be complied with by 2015 again based on the AEI.

Although the EU Air Quality Limit Values are the basis of legislation, other thresholds outlined by the EU Directives are used which are triggers for particular actions. The Alert Threshold is defined in Council Directive 96/62/EC as "a level beyond which there is a risk to human health from brief exposure and at which immediate steps shall be taken as laid down in Directive 96/62/EC". These steps include undertaking to ensure that the necessary steps are taken to inform the public (e.g. by means of radio, television and the press).

The Margin of Tolerance is defined in Council Directive 96/62/EC as a concentration which is higher than the limit value when legislation comes into force. It decreases to meet the limit value by the attainment date. The Upper Assessment Threshold is defined in Council Directive 96/62/EC as a concentration above which high quality measurement is mandatory. Data from measurement may be supplemented by information from other sources, including air quality modelling.

An annual average limit for both NO_X (NO and NO₂) is applicable for the protection of vegetation in highly rural areas away from major sources of NO_X such as large conurbations, factories and high road vehicle activity such as a dual carriageway or motorway. Annex VI of EU Directive 1999/30/EC identifies that monitoring to demonstrate compliance with the NO_X limit for the protection of vegetation should be carried out distances greater than:

- 5 km from the nearest motorway or dual carriageway
- 5 km from the nearest major industrial installation
- 20 km from a major urban conurbation
- As a guideline, a monitoring station should be indicative of approximately 1000 km² of surrounding area.

Under the terms of EU Framework Directive on Ambient Air Quality (96/62/EC), geographical areas within member states have been classified in terms of zones. The zones have been defined in order to meet the criteria for air quality monitoring, assessment and management as described in the Framework Directive and Daughter Directives. Zone A is defined as Dublin and its environs, Zone B is defined as Cork City, Zone C is defined as 23 urban areas with a population greater than 15,000 and Zone D is defined as the remainder of the country. The Zones were defined based on among other things, population and existing ambient air quality.

EU Council Directive 96/62/EC on ambient air quality and assessment has been adopted into Irish Legislation (S.I. No. 33 of 1999). The act has designated the Environmental Protection Agency (EPA) as the competent authority responsible for the implementation of the Directive and for assessing ambient air quality in the State. Other commonly referenced ambient air quality standards include the World Health Organisation. The WHO guidelines differ from air quality standards in that they are primarily set to protect public health from the effects of air pollution. Air quality standards, however, are air quality guidelines recommended by governments, for which additional factors, such as socio-economic factors, may be considered.

APPENDIX 9.2 – DUST MANAGEMENT PLAN

The objective of dust control at the site is to ensure that no significant nuisance occurs at nearby sensitive receptors. In order to develop a workable and transparent dust control strategy, the following management plan has been formulated by drawing on best practice guidance from Ireland, the UK (IAQM (2014), BRE (2003), The Scottish Office (1996), UK ODPM (2002)) and the USA (USEPA, 1997). The following measures have been incorporated into the Outline Construction & Demolition Management Plan (OC&DMP) prepared for the site.

Site Management

The aim is to ensure good site management by avoiding dust becoming airborne at source. This will be done through good design and effective control strategies.

At the construction planning stage, the siting of activities and storage piles will take note of the location of sensitive receptors and prevailing wind directions in order to minimise the potential for significant dust nuisance (see Figure 9.1 for the windrose for Casement Aerodrome). As the prevailing wind is predominantly south-westerly to south-easterly, locating construction compounds and storage piles downwind of sensitive receptors will minimise the potential for dust nuisance to occur at sensitive receptors.

Good site management will include the ability to respond to adverse weather conditions by either restricting operations on-site or quickly implementing effective control measures before the potential for nuisance occurs. When rainfall is greater than 0.2mm/day, dust generation is generally suppressed (IAQM, 2014; UK ODPM, 2002). The potential for significant dust generation is also reliant on threshold wind speeds of greater than 10 m/s (19.4 knots) (at 7m above ground) to release loose material from storage piles and other exposed materials (USEPA, 1986). Particular care should be taken during periods of high winds (gales) as these are periods where the potential for significant dust emissions are highest. The prevailing meteorological conditions in the vicinity of the site are favourable in general for the suppression of dust for a significant period of the year. Nevertheless, there will be infrequent periods were care will be needed to ensure that dust nuisance does not occur. The following measures shall be taken in order to avoid dust nuisance occurring under unfavourable meteorological conditions:

- The Principal Contractor or equivalent must monitor the contractors' performance to ensure that the proposed mitigation measures are implemented and that dust impacts and nuisance are minimised;
- During working hours, dust control methods will be monitored as appropriate, depending on the prevailing meteorological conditions;
- The name and contact details of a person to contact regarding air quality and dust issues shall be displayed on the site boundary, this notice board should also include head/regional office contact details;
- It is recommended that community engagement be undertaken before works commence on site explaining the nature and duration of the works to local residents and businesses;
- A complaints register will be kept on site detailing all telephone calls and letters of complaint received in connection with dust nuisance or air quality concerns, together with details of any remedial actions carried out;
- It is the responsibility of the contractor at all times to demonstrate full compliance with the dust control conditions herein;
- At all times, the procedures put in place will be strictly monitored and assessed.

The dust minimisation measures shall be reviewed at regular intervals during the works to ensure the effectiveness of the procedures in place and to maintain the goal of minimisation of dust through the use of best practice and procedures. In the event of dust nuisance occurring outside the site boundary, site activities will be reviewed and satisfactory procedures implemented to rectify the problem. Specific dust control measures to be employed are described below.

Preparing and Maintaining the Site

- Plan site layout so that machinery and dust causing activities are located away from receptors, as far as is possible.
- Erect solid screens or barriers around dusty activities or the site boundary that are at least as high as any stockpiles on site.
- Fully enclose specific operations where there is a high potential for dust production and the site is active for an extensive period.
- Avoid site runoff of water or mud.
- Keep site fencing, barriers and scaffolding clean using wet methods.
- Remove materials that have a potential to produce dust from site as soon as possible, unless being reused on site. If they are being re-used on-site cover as described below.
- Cover, seed or fence stockpiles to prevent wind whipping.

Operating Vehicles / Machinery and Sustainable Travel

- Ensure all vehicles switch off engines when stationary no idling vehicles.
- Avoid the use of diesel or petrol powered generators and use mains electricity or battery powered equipment where practicable.
- Impose and signpost a maximum-speed-limit of 20 kph haul roads and work areas (if long haul routes are required these speeds may be increased with suitable additional control measures provided, subject to the approval of the nominated undertaker and with the agreement of the local authority, where appropriate).
- Produce a Construction Logistics Plan to manage the sustainable delivery of goods and materials.
- Implement a Travel Plan that supports and encourages sustainable travel (public transport, cycling, walking, and car-sharing)

Operations

- Only use cutting, grinding or sawing equipment fitted or in conjunction with suitable dust suppression techniques such as water sprays or local extraction, e.g. suitable local exhaust ventilation systems.
- Ensure an adequate water supply on the site for effective dust/particulate matter suppression/mitigation, using non-potable water where possible and appropriate.
- Use enclosed chutes and conveyors and covered skips.
- Minimise drop heights from conveyors, loading shovels, hoppers and other loading or handling equipment and use fine water sprays on such equipment wherever appropriate.
- Ensure equipment is readily available on site to clean any dry spillages and clean up spillages as soon as reasonably practicable after the event using wet cleaning methods.

Waste Management

• Avoid bonfires and burning of waste materials.

Measures Specific to Earthworks

- Re-vegetate earthworks and exposed areas/soil stockpiles to stabilise surfaces as soon as practicable.
- Use Hessian, mulches or trackifiers where it is not possible to re-vegetate or cover with topsoil, as soon as practicable.
- Only remove the cover in small areas during work and not all at once.
- During dry and windy periods, and when there is a likelihood of dust nuisance, a bowser will operate to ensure moisture content is high enough to increase the stability of the soil and thus suppress dust.

Measures Specific to Construction

- Avoid scabbling (roughening of concrete surfaces) if possible.
- Ensure sand and other aggregates are stored in bunded areas and are not allowed to dry out, unless this is required for a particular process, in which case ensure that appropriate additional control measures are in place.
- Ensure bulk cement and other fine powder materials are delivered in enclosed tankers and stored in silos with suitable emission control systems to prevent escape of material and overfilling during delivery.
- For smaller supplies of fine power materials ensure bags are sealed after use and stored appropriately to prevent dust.

Measures Specific to Trackout

Site roads (particularly unpaved) can be a significant source of fugitive dust from construction sites if control measures are not in place. The most effective means of suppressing dust emissions from unpaved roads is to apply speed restrictions. Studies show that these measures can have a control efficiency ranging from 25 to 80% (UK ODPM, 2002).

- A speed restriction of 20 km/hr will be applied as an effective control measure for dust for on-site vehicles.
- Use water-assisted dust sweeper(s) on the access and local roads, to remove, as necessary, any material tracked out of the site. This may require the sweeper being continuously in use. If sweeping using a road sweeper is not possible due to the nature of the surrounding area then a suitable smaller scale street cleaning vacuum will be used.
- Avoid dry sweeping of large areas.
- Ensure vehicles entering and leaving sites are covered to prevent escape of materials during transport.
- Inspect on-site haul routes for integrity and instigate necessary repairs to the surface as soon as reasonably practicable.
- Record all inspections of haul routes and any subsequent action in a site log book.
- Install hard surfaced haul routes, which are regularly damped down with fixed or mobile sprinkler systems, or mobile water bowsers and regularly cleaned.
- Implement a wheel washing system (with rumble grids to dislodge accumulated dust and mud prior to leaving the site where reasonably practicable).
- Ensure there is an adequate area of hard surfaced road between the wheel wash facility and the site exit, wherever site size and layout permits.
- Access gates to be located at least 10 m from receptors where possible.

Summary of Dust Mitigation Measures

The pro-active control of fugitive dust will ensure that the prevention of significant emissions, rather than an inefficient attempt to control them once they have been released, will contribute towards the satisfactory performance of the contractor. The key features with respect to control of dust will be:

- The specification of a site policy on dust and the identification of the site management responsibilities for dust issues;
- The development of a documented system for managing site practices with regard to dust control;
- The development of a means by which the performance of the dust minimisation plan can be regularly monitored and assessed; and
- The specification of effective measures to deal with any complaints received.